# Meshing Settings
Comprehensive guide to Flow360's meshing capabilities, covering default parameters, volume zones, and refinement techniques for optimal CFD simulations.
# 📋 Available Options
Component | Description |
---|---|
Meshing Defaults | Fundamental control parameters for mesh generation |
Volume Zones | Specialized regions for specific flow features |
Refinements | Local mesh control for critical regions |
# 🔍 Detailed Descriptions
# Meshing Defaults
Core parameters controlling the fundamental aspects of mesh generation.
- Surface mesh characteristics
- Boundary layer properties
- Global refinement levels
- Gap treatment strategies
# Volume Zones
Specialized regions for specific flow applications.
- Farfield zones for external flow simulations
- Rotation cylinder zones for rotating machinery
- Custom volume zones for specific flow features
# Refinements
Local mesh control mechanisms for critical regions.
- Surface edge refinements
- Boundary layer refinements
- Uniform refinements
- Axisymmetric refinements
- Passive spacing controls
💡 Tips
- Begin with default settings and adjust based on specific needs
- Use refinement regions strategically for critical flow features
- Consider using passive spacing for interface regions
- Monitor solution convergence when adjusting mesh parameters
- Validate mesh quality metrics before proceeding with simulation
- Start with coarser meshes and refine based on solution quality
- Ensure smooth transitions between different mesh regions
- Consider computational resources when setting refinement levels
Common Pitfalls
- Over-refinement in non-critical regions
- Insufficient wake resolution
- Poor boundary layer transition
- Inadequate gap treatment
- Inconsistent refinement levels
Meshing Considerations
Surface Mesh Quality
- Maintain element quality metrics
- Ensure proper resolution of geometric features
- Consider curvature-based refinement
Boundary Layer Resolution
- Target appropriate y+ values
- Use suitable growth rates (typically 1.1-1.2)
- Ensure sufficient layers for boundary layer development
Wake and Off-Body Features
- Extend refinement regions appropriately
- Consider flow angles and operating conditions
- Account for expected flow features
❓ Frequently Asked Questions
How do I determine appropriate refinement levels?
Start with default settings and adjust based on flow features and geometric complexity. Use refinement regions for critical areas and monitor solution quality.
What's the best approach for rotating machinery?
Combine boundary layer refinement with axisymmetric refinement, ensuring proper resolution of tip vortices and wake regions.
When should I use different volume zone types?
Use farfield zones for external flows, rotation cylinders for rotating machinery, and custom zones for specific flow features requiring specialized treatment.
🐍 Python Example Usage
from flow360 import (
MeshingParams,
MeshingDefaults,
AutomatedFarfield,
RotationCylinder,
SurfaceRefinement,
BoundaryLayer,
u
)
# Configure meshing parameters
meshing_params = MeshingParams(
defaults=MeshingDefaults(
surface_edge_growth_rate=1.2,
surface_max_edge_length=0.1 * u.m,
boundary_layer_growth_rate=1.2,
boundary_layer_first_layer_thickness=0.01 * u.mm
),
volume_zones=[
AutomatedFarfield(method="auto"),
RotationCylinder(
spacing_axial=0.02 * u.m,
spacing_radial=0.01 * u.m,
spacing_circumferential=0.015 * u.m,
entities=[propeller_cylinder]
)
],
refinements=[
SurfaceRefinement(
name="wing_surface",
faces=[left_wing_surface],
max_edge_length=0.05 * u.m
),
BoundaryLayer(
name="wing_bl",
faces=[right_wing_surface],
first_layer_thickness=1e-5 * u.m,
growth_rate=1.2
)
]
)